We study a distributed beamforming approach for cell-free massive multiple-input multiple-output networks, referred to as Global Statistics \& Local Instantaneous information-based minimum mean-square error (GSLI-MMSE). The scenario with multi-antenna access points (APs) is considered over three different channel models: correlated Rician fading with fixed or random line-of-sight (LoS) phase-shifts, and correlated Rayleigh fading. With the aid of matrix inversion derivations, we can construct the conventional MMSE combining from the perspective of each AP, where global instantaneous information is involved. Then, for an arbitrary AP, we apply the statistics approximation methodology to approximate instantaneous terms related to other APs by channel statistics to construct the distributed combining scheme at each AP with local instantaneous information and global statistics. With the aid of uplink-downlink duality, we derive the respective GSLI-MMSE precoding schemes. Numerical results showcase that the proposed GSLI-MMSE scheme demonstrates performance comparable to the optimal centralized MMSE scheme, under the stable LoS conditions, e.g., with static users having Rician fading with a fixed LoS path.
Passive acoustic mapping (PAM) is a key imaging technique for characterizing cavitation activity in therapeutic ultrasound applications. Recent model-based beamforming algorithms offer high reconstruction quality and strong physical interpretability. However, their computational burden and limited temporal resolution restrict their use in applications with time-evolving cavitation. To address these challenges, we introduce a PAM beamforming framework based on a novel convolutional formulation in the time domain, which enables efficient computation. In this framework, PAM is formulated as an inverse problem in which the forward operator maps spatiotemporal cavitation activity to recorded radio-frequency signals accounting for time-of-flight delays defined by the acquisition geometry. We then formulate a regularized inversion algorithm that incorporates prior knowledge on cavitation activity. Experimental results demonstrate that our framework outperforms classical beamforming methods, providing higher temporal resolution than frequency-domain techniques while substantially reducing computational burden compared with iterative time-domain formulations.
In the multi-cell multiuser multi-input multi-output (MU-MIMO) systems, fractional programming (FP) has demonstrated considerable effectiveness in optimizing beamforming vectors, yet it suffers from high computational complexity. Recent improvements demonstrate reduced complexity by avoiding large-dimension matrix inversions (i.e., FastFP) and faster convergence by learning to unfold the FastFP algorithm (i.e., DeepFP).
Simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) has emerged as a promising technology to realize full-space coverage and boost spectral efficiency in next-generation wireless networks. Yet, the joint design of the base station precoding matrix as well as the STAR-RIS transmission and reflection coefficient matrices leads to a high-dimensional, strongly nonconvex, and NP-hard optimization problem. Conventional alternating optimization (AO) schemes typically involve repeated large-scale matrix inversion operations, resulting in high computational complexity and poor scalability, while existing deep learning approaches often rely on expensive pre-training and large network models. In this paper, we develop a gradient-based meta learning (GML) framework that directly feeds optimization gradients into lightweight neural networks, thereby removing the need for pre-training and enabling fast adaptation. Specifically, we design dedicated GML-based schemes for both independent-phase and coupled-phase STAR-RIS models, effectively handling their respective amplitude and phase constraints while achieving weighted sum-rate performance very close to that of AO-based benchmarks. Extensive simulations demonstrate that, for both phase models, the proposed methods substantially reduce computational overhead, with complexity growing nearly linearly when the number of BS antennas and STAR-RIS elements grows, and yielding up to 10 times runtime speedup over AO, which confirms the scalability and practicality of the proposed GML method for large-scale STAR-RIS-assisted communications.
Fully digital massive MIMO systems with large numbers (1000+) of antennas offer dramatically increased capacity gains from spatial multiplexing and beamforming. Designing digital receivers that can scale to these array dimensions presents significant challenges regarding both channel estimation overhead and digital computation. This paper presents a computationally efficient and low-overhead receiver design based on long-term beamforming. The method combines finding a low-rank projection from the spatial covariance estimate with a fast polynomial matrix inverse. Ray tracing simulations show minimal loss relative to complete instantaneous beamforming while offering significant overhead and computational gains.




Precoding design based on weighted sum-rate (WSR) maximization is a fundamental problem in downlink multi-user multiple-input multiple-output (MU-MIMO) systems. While the weighted minimum mean-square error (WMMSE) algorithm is a standard solution, its high computational complexity--cubic in the number of base station antennas due to matrix inversions--hinders its application in latency-sensitive scenarios. To address this limitation, we propose a highly parallel algorithm based on a block coordinate descent framework. Our key innovation lies in updating the precoding matrix via block coordinate gradient descent, which avoids matrix inversions and relies solely on matrix multiplications, making it exceptionally amenable to GPU acceleration. We prove that the proposed algorithm converges to a stationary point of the WSR maximization problem. Furthermore, we introduce a two-stage warm-start strategy grounded in the sum mean-square error (MSE) minimization problem to accelerate convergence. We refer to our method as the Accelerated Mixed weighted-unweighted sum-MSE minimization (A-MMMSE) algorithm. Simulation results demonstrate that A-MMMSE matches the WSR performance of both conventional WMMSE and its enhanced variant, reduced-WMMSE, while achieving a substantial reduction in computational time across diverse system configurations.




Accurate Angle-of-arrival (AoA) estimation is essential for next-generation wireless communication systems to enable reliable beamforming, high-precision localization, and integrated sensing. Unfortunately, classical high-resolution techniques require multi-element arrays and extensive snapshot collection, while generic Machine Learning (ML) approaches often yield black-box models that lack physical interpretability. To address these limitations, we propose a Symbolic Regression (SR)-based ML framework. Namely, Symbolic Regression-based Angle of Arrival and Beam Pattern Estimator (SABER), a constrained symbolic-regression framework that automatically discovers closed-form beam pattern and AoA models from path loss measurements with interpretability. SABER achieves high accuracy while bridging the gap between opaque ML methods and interpretable physics-driven estimators. First, we validate our approach in a controlled free-space anechoic chamber, showing that both direct inversion of the known $\cos^n$ beam and a low-order polynomial surrogate achieve sub-0.5 degree Mean Absolute Error (MAE). A purely unconstrained SR method can further reduce the error of the predicted angles, but produces complex formulas that lack physical insight. Then, we implement the same SR-learned inversions in a real-world, Reconfigurable Intelligent Surface (RIS)-aided indoor testbed. SABER and unconstrained SR models accurately recover the true AoA with near-zero error. Finally, we benchmark SABER against the Cram\'er-Rao Lower Bounds (CRLBs). Our results demonstrate that SABER is an interpretable and accurate alternative to state-of-the-art and black-box ML-based methods for AoA estimation.
We study how far a diffusion process on a graph can drift from a designed starting pattern when that pattern is produced using Laplacian regularisation. Under standard stability conditions for undirected, entrywise nonnegative graphs, we give a closed-form, instance-specific upper bound on the steady-state spread, measured as the relative change between the final and initial profiles. The bound separates two effects: (i) an irreducible term determined by the graph's maximum node degree, and (ii) a design-controlled term that shrinks as the regularisation strength increases (following an inverse square-root law). This leads to a simple design rule: given any target limit on spread, one can choose a sufficient regularisation strength in closed form. Although one motivating application is array beamforming, where the initial pattern is the squared magnitude of the beamformer weights, the result applies to any scenario that first enforces Laplacian smoothness and then evolves by linear diffusion on a graph. Overall, the guarantee is non-asymptotic, easy to compute, and certifies how much steady-state deviation can occur.
In this paper, we investigate downlink co-frequency interference (CFI) mitigation in non-geostationary satellites orbits (NGSOs) co-existing systems. Traditional mitigation techniques, such as Zero-forcing (ZF), produce a null towards the direction of arrivals (DOAs) of the interfering signals, but they suffer from high computational complexity due to matrix inversions and required knowledge of the channel state information (CSI). Furthermore, adaptive beamformers, such as sample matrix inversion (SMI)-based minimum variance, provide poor performance when the available snapshots are limited. We propose a Mamba-based beamformer (MambaBF) that leverages an unsupervised deep learning (DL) approach and can be deployed on the user terminal (UT) antenna array, for assisting downlink beamforming and CFI mitigation using only a limited number of available array snapshots as input, and without CSI knowledge. Simulation results demonstrate that MambaBF consistently outperforms conventional beamforming techniques in mitigating interference and maximizing the signal-to-interference-plus-noise ratio (SINR), particularly under challenging conditions characterized by low SINR, limited snapshots, and imperfect CSI.



This paper investigates the use of beyond diagonal reconfigurable intelligent surface (BD-RIS) with $N$ elements to advance integrated sensing and communication (ISAC). We address a key gap in the statistical characterizations of the radar signal-to-noise ratio (SNR) and the communication signal-to-interference-plus-noise ratio (SINR) by deriving tractable closed-form cumulative distribution functions (CDFs) for these metrics. Our approach maximizes the radar SNR by jointly configuring radar beamforming and BD-RIS phase shifts. Subsequently, zero-forcing is adopted to mitigate user interference, enhancing the communication SINR. To meet ISAC outage requirements, we propose an analytically-driven successive non-inversion sampling (SNIS) algorithm for estimating network parameters satisfying network outage constraints. Numerical results illustrate the accuracy of the derived CDFs and demonstrate the effectiveness of the proposed SNIS algorithm.